CPU上でのLLM推論速度を加速!モデル量子化の解説

2024.03.03

WorkWonders

近年、AI技術の発展に伴い、大規模なLLMアプリケーションを運用するには膨大な計算リソースが必要となっています。多くの場合、CPU上での推論の遅延が問題とされますが、インテル®拡張機能のPyTorch*IPEXなどのオープンソースツールを用いることで、
CPU上でもGPUに匹敵する推論速度を実現する進歩が見られます。特に、モデル量子化はニューラルネットワークの計算複雑度を大幅に下げる技術です。これには、FP32からINT8への重み削減が含まれ、計算負荷の軽減とメモリ使用量の削減に寄与します。

IPEXを使用したモデル量子化の手法には、Mixed-PrecisionやSmoothQuantなどがあり、これらにより推論速度を向上させることができます。ただし、これらの技術はある程度の言語モデリング性能の低下を引き受けることになりますが、多くの場合、1%未満に抑えられます。

モデルの簡略化は推論時の遅延を軽減し、コンピューティングインフラの拡張やアップグレードが無くても、LLM推論の遅延に対応可能です。このテクニックは、PyTorchで簡単に実装可能であり、IPEXは数行のコードで始められる選択肢として良いオプションを提供します。

出典 : https://towardsdatascience.com/improving-llm-inference-latency-on-cpus-with-model-quantization-28aefb495657

【このニュース記事は生成AIを利用し、世界のAI関連ニュースをキュレーションしています】

【お知らせ】
弊社ワークワンダース社主催ウェビナーのご案内です。


<2025年1月21日実施セミナー>

生産性を爆上げする、「生成AI導入」と「AI人材育成」のコツ


【内容】
1. 生産性を爆上げするAI活用術(安達裕哉:ワークワンダース株式会社 代表取締役CEO)
2. 成功事例の紹介:他業種からAI人材への転身(梅田悟司:ワークワンダース株式会社CPO)
3. 生成AI導入推進・人材育成プログラム「Q&Ai」の全貌(元田宇亮:生成AI研修プログラム「Q&Ai」事業責任者)
4. 質疑応答



日時:
2025/1/21(火) 16:00-17:30

参加費:無料  
Zoomビデオ会議(ログイン不要)を介してストリーミング配信となります。



お申込み・詳細 こちらウェビナーお申込みページをご覧ください

(2024/12/11更新)