革新的チップレットシステム「Hecaton」による言語モデルの効率的トレーニング

2024.09.06

WorkWonders

清華大学の研究チームが、“Hecaton: Training and Finetuning Large Language Models with Scalable Chiplet Systems”と題した技術論文を発表しました。
大規模な言語モデルのトレーニングやファインチューニングは膨大な計算処理とメモリが必要ですが、Hecatonと呼ばれる新しいチップレットアーキテクチャは、これらの問題に対処するために開発されました。
このシステムはDRAMアクセスを劇的に削減し、分散トレーニングを効率的に行うために設計されており、計算と通信の比率を一定に保ちながら性能のスケーリングを実現しています。
実験では、従来のテンソル並列性を用いたモデルと比較して4.98倍のパフォーマンス向上と2.35倍のエネルギー削減を果たしており、大規模言語モデルのトレーニングの新たな可能性を切り開いています。
この技術論文は、2024年7月に公開され、その画期的な内容は学界や技術者の間で注目を集めています。

出典 : Scalable Chiplet System for LLM Training, Finetuning and Reduced DRAM Accesses (Tsinghua University) https://semiengineering.com/scalable-chiplet-system-for-llm-training-finetuning-and-reduced-dram-accesses-tsinghua-university/

【このニュース記事は生成AIを利用し、世界のAI関連ニュースをキュレーションしています】

【お知らせ】
弊社ワークワンダース社主催ウェビナーのご案内です。


<2025年1月21日実施セミナー>

生産性を爆上げする、「生成AI導入」と「AI人材育成」のコツ


【内容】
1. 生産性を爆上げするAI活用術(安達裕哉:ワークワンダース株式会社 代表取締役CEO)
2. 成功事例の紹介:他業種からAI人材への転身(梅田悟司:ワークワンダース株式会社CPO)
3. 生成AI導入推進・人材育成プログラム「Q&Ai」の全貌(元田宇亮:生成AI研修プログラム「Q&Ai」事業責任者)
4. 質疑応答



日時:
2025/1/21(火) 16:00-17:30

参加費:無料  
Zoomビデオ会議(ログイン不要)を介してストリーミング配信となります。



お申込み・詳細 こちらウェビナーお申込みページをご覧ください

(2024/12/11更新)